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Abstract

The architect Antonio Gaudi designed complex structures based on cat-
enary systems. His beautiful forms were created by suspending pieces of 
string from hooks, deforming them with weights and other strings, then 
inverting the form to create the structural elements. 

Today’s architects are at a loss to reproduce these types of catenary forms 
when using even the most advanced design tools on the market. For 
our final project, we aim to provide a computationally enhanced version 
of Gaudi’s atelier. We are creating the design software for architects inter-
ested in building models using catenary systems. The tool is implemented 
in C++ and Tcl/Tk, and intented to be used for both construction and 
analysis of catenary forms.
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Introduction

Antonio Gaudi developed a design technique which allows architects 
to design complex structures based on catenary systems. The curves in 
catenary systems are formed by perfectly flexible, uniformly dense strings 
suspended from their endpoints and weighted under gravity. Gaudi cre-
ated many amazing structures using pieces of string - structures that 
architects would be at a loss to try and reproduce today using even most 
advanced design tools on the market. For this final project, we aim to 
provide a computationally enhanced version of Gaudi’s atelier. Rather than 
simply allowing an architect to arrange geometric primitives, as they can 
in AutoCad and other design tools, we instead wanted to provide an 
environment in which strings responding to gravity and can be arranged 
to form structures that are far more organic and beautiful.

Catenary systems have been used for construction in Catalan areas of 
Spain for a long time. For example, if a Catalan stair is to be constructed, 
the form is not detailed by the planners or architects. Instead, the masons 
on site hang a rope between the point of departure and the point to be 
reached, trace the shape, and flip the curve over to use as the guide for 
constructing the masonry arch that carries the stairs. The rope is in pure 

tension, as it can not take any compression due to 
its flexibility. Therefore the form it finds contains the 
pure tensile force within the envelope of the string. 
Inverting the parabola results in the pure compression 
arch necessary for brick construction, which cannot 
take any tensile forces.

Antonio Gaudi developed the system of translating 
catenary string statics into a spatial design system. 
He constructed scaled models of his design ideas by 
developing forms through a weighted string form-
finding method. In his case, the models are spatial 
and are much more complex then the catenary stair-
case example. Gaudi achieved the desired forms 

Steel bridge 
When inverted, the arches 
can be identified as catenary 
shapes (approximately) with the 
vertical members in pure 
compression. This bridge is not 
a design by Gaudi, it illustrates 
principle of catenary systems.
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through the control of three variables - anchor points of the strings, the 
length of the strings, and the weights attached to them. By designing 
forms this way, Gaudi knew that the resulting geometry would act purely 
in compression when inverted. He also had a fairly precise estimate of the 
loads necessary on the different members of his construction. Therefore, 
Gaudi could construct buildings that would not collapse or require extra 
support structures.

Beyond structural form finding, Gaudi also used the catenary method 
for rendering the interior and exterior shapes of buildings. He imagined 
interiors by painting and tracing over the “wire frame” models of lines, 
which were simply photos of his string forms.

For this project, we have chosen to create a design tool for architects that 
differs in its approach to form-finding from current tools likes AutoCad, 
Rhino, SoftImage, or Maya. CAD packages take the task of drafting and 
add in the power of computation in order to make more complex and 
interesting buildings possible. Software tools allow designers to experi-
ment with other shapes, merging computational power with form finding 
methods that result in more interesting architecture and new styles. Maya 
and other programs are modelling tools rather than generative tools.

Tools are an essential part of production in any field. Even tool-building 
itself relies on other tools, with the most basic of all tools being the 
human hands. People who have the ability to create their own tools are 
limited only by their imaginations in what they can do. Meanwhile, those 
that are not tool-builders are limited in what they can accomplish not 
merely by their imaginations, but also by the tools they have available 
to use. 

In computer graphics, it seems that many of the tools built are meant 
to service other computer graphics tasks. With the exception of the 
movie industry, research in computer graphics rarely impacts fields other 

than the computer graphics field itself. For 
example, faster rendering techniques and other 
advances in computer graphics are interesting, 
but researchers should address how these tech-
niques can be used in new contexts and out-
side the exclusively visual domain. There are 
many fields that could benefit from tools that 
use the state-of-the-art in computer graphics. 

Gaudi’s rendering technique
Gaudi used photographs of the 
string models literally as wire-
frame models, filling in the sur-
faces with paint to create an 
impression of the spaces that 
would be created.
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We hope the creation of our catenary design tool will help contemporary 
architects realize the beautiful, Gaudi-inspired shapes and means through 
computational methods rather than physically sitting at their desks tying 
strings together. Computer-aided catenary designs will be quicker and 
provide room for playing, trial and error, and potentially provide a means 
to create more complex designs than imagined in the physical world. 
In addition, we hope our tool will help expand the reach of computer 
graphics to outside fields. If successful, perhaps others will begin applying 
complex computer graphics to new fields as well.

Goals

Generally, we wanted to create a useful and intuitive program for archi-
tects to construct precise catenary systems in a three-dimensional world. 
We decided to set small goals to help realize this grand scheme. One goal 
was to build was a realistic physical model of the strings so that they 
would elegantly respond to hooks, weights, and gravity in real-time. We 
hoped to be able to place the hooks and strings in the three-dimensional 
world and for them to behave as they would in the real world. We 
wanted users of our program to have the ability to explore form through 
simulated gravity-based string modelers. The goal was to provide an easy 
to use modeling environment solely based on the methodology of placing 
strings between either fixed hooks or to each other. 

Another goal we had for this project involved the visual graphics and 
rendering component. We were concerned with how the strings, hooks, 
and weights looked (either realistically or intentionally unrealistically). We 
hoped that we would be able to have a mode where the strings were 
rendered in different colors depending on how the parts were affected by 
external and internal forces, stresses, and strains. We also hoped to have 
other modes for the user to toggle between when viewing their string 
constructions, or to have skins that would render over the wire frame 
structures built up by the strings. We also wanted the user to be able to 
flip their design 180 degrees and back so they could get a feel for how it 
would look as a building constructed in the physical world.

Colònia Güell model
Hanging and inverted images 
of a Gaudi design.
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On the program construction side, we had goals for our data structure 
design, general back-end program design, and physics computations. We 
knew that we would need to design intelligent methods for passing 
information between the different parts of the program, such as a string 
or hook’s placement, length, weight, or the forces applied to them. 
General information about the design, such as the number of strings 
in the scene, their adjacency, and connectedness was intended to be 
available as well.

In order to construct the software for this project within the time con-
straints, we divided the project into different components, each with small 
goals we hoped to reach. The first was the construction of an intuitive, 
clean, and powerful user interface (UI). The UI design was intended to 
focus on the interactions between the program and the user, in particular 
with the experience of the user. We wanted to create an intuitive and 
powerful way to navigate through the program, to allow the user to 
work within the string-gravity spaces, and to provide the user with the 
means to save, load, or create new files, and thus new designs. Part 
of the navigation design meant structuring the layout of the screen and 
all the elements that interface between human input and the program 
execution, such as being able to select objects in the scene.

If all went well, we set a goal to user-test our program with some 
designers in the architecture department at MIT, in order to get feedback 
on the design of the program, the concept behind the work, and the 
usefulness of the tool. 

Ultimately it was not the goal to just provide a catenary environment but 
to create a tool that is easily expandable and adjustable. It is also not 
about recreating an accurate, historical simulation of Gaudi’s techniques, 
but rather to take his inspiring form-finding techniques and use them as 
a starting point for building a modeling tool that operates around the 
principles he used.

Interiors and exteriors
Sagrada familia still currently 
under construction.
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Individual Contributions

Each member of the team was responsible for a specific component of the 
project. We divided the project into the following chunks:

 Setting up the development environment

 Building the physics simulation/string model

 Building the user interface in Tcl/Tk

 Writing the code that binds the C++ classes with the UI

 Rendering the objects in the scene

 Putting together the written report and presentation

Dan Chak’s main contribution was setting up the development environ-
ment and writing C++ code, in particular the code that glued the user 
interface to the string model. Setting up the environment involved creat-
ing our CVS repository, creating the program framework and writing a 
makefile, putting all of this into CVS, providing access to the appropriate 
machines so each team member could work on the project remotely, and 
offering general system support to the team.

The C++ code that Dan wrote includes the classes cdObject, cdString, 
cdHook, cdStringHook, cdSkyHook, cdWeight, and cdModel, which create 
the framework of the program. He also wrote the Tcl wrappers for the 
C++ class methods, as well as various higher level concepts which were 
to be invoked from the Tcl/Tk user interface. These functions are in tcl-
bindings.C.

Megan Galbraith’s main contributions involved designing and building the 
user interface, designing and formatting the final document and proposal, 
setting up the team webpage, and building the slides for the presentation. 
She wrote the Tcl/Tk code that places the buttons and menus in the 

Weiser- Umemoto model
Explorations of catenary sys-
tems in physical and 
digital models (1996).
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windows and on the screen, and made the icons for the user interface. 
Megan also worked on mapping the correct functionality to the interface 
objects and setting up the features for users to adjust the parameters of 
different objects in the model. 

Megan was primarily responsible for the visual design of the program, 
selecting the color scheme, and rendering hooks and other design ele-
ments. She worked on ui.tcl, bindings.tcl, tcl-bindings.C and edited other 
functions in the hook source code.

Axel Kilian’s main contribution was to research the best approach to mod-
elling the physics of the strings as they fall in gravity and are deformed 
by weights, strings, and hooks. He was to then construct a model of 
this behavior in C++ code. He wrote, adapted, and integrated the particle-
spring simulation classes into the project. 

Axel built several test series, implemented in Java, early in the develop-
ment process. They explored the behavior of the spring-particle system in 
determined and undetermined structural situations. He ran several tests 
that explored versions of connectivity varying the number of strings that 
interconnect in a single point. Three strings in a point in space has a 
unique solution and therefore is still statically determined. If there are four 
strings there is no one unique solution anymore and one possible solution 
can only be found through interactive approximation. This is where a 
system like the spring particle system is necessary. Finite element methods 
would be perfectly fine to use but pose a much larger workload on the 
system.

In the end, many of these components merged and we each assisted 
one another with various parts of the work. We all helped to write the 
OpenGL code for drawing the objects, we worked together to debug the 
program, and chipped in with the writing of the final documents.

Achievements

All in all, we achieved the spirit of the program we wanted to make,  
although the functionality is not as far along as we’d hoped it would 
be. There were setbacks due to the languages that we used to code 
the project because two of the three team members had little to no 
experience using either Tcl/Tk, C++, or both. Also, the particle system we 
used to model the strings was problematic in the C++ version, and it kept 
us from adding additional features and modes to the tool that are more 
interesting than the basic behavior we were able to implement.

Java Tests
Screenshots from Axel Kilian’s 
three Java physics simulations
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In terms of being able to interact with and use the system, we achieved 
most of our goals, although in two separate paths that the program took. 
In one path, many of the manipulation functions for accurately placing 
objects manually and for developing 3D models functioned, but the solver 
was highly unpredictable. The strings performed what looked like a laser 
show across the screen. These problems related to ill-behaved physics, so 
we stepped back and rewrote parts of the program. The new iteration 
resulted in a program where the solver behaved well, but the 3D place-
ment and manipulation was non-functional. We were unable to get the 
two paths working together as we had set goals to do.

The user interface as a whole contains the important methods and func-
tions for placing strings and hooks into the world so that designs can be 
built. The canvas of the scene is interactive, and users can point and click 
to place objects in the space or to select objects, which we do by compar-
ing distances to the mouse position in the x-y plane. Selecting objects 
in a 3D world was a more difficult task than we expected. However, 
it is worthwhile because the user can get feedback from the program 
about the position of hooks, lengths of strings, and placement of hooks 
on strings.

We made small achievements with the physics modeling problem and 
getting the solvers and particle methods to behave reasonably. The strings 
did not always behave as they should have, but there are elements about 
their behavior when working properly that really add to the organic 
feeling of the tool. Most notably is when new strings are created and fall 
with respect to gravity. To work on this component, Axel created four Java 
versions of what the particle system should do under the deformations 
of hooks, weights, and strings. These versions were difficult to success-
fully realize in the C++ interactive version of the program. However, the 
conceptual work was done and as a result we have several very nice 
applets that show this in concept.

We reached the goal of providing the necessary infrastructure for the 
program and setting up the interactivity. We also reached the goal of 
creating a fully working prototype that allows for all the fundamental 
modes of modeling the catenary systems. The main hurdle was the 
combination of interactive user input with the constantly changing spring 
particle model.

Finally, it was an achievement to set up a development environment for 
three programmers with different backgrounds to work together on a 
single project. We were concerned about getting in each other’s way or 
overwriting code, but wanted to be able to work on the project without 
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needing too much interaction with the entire group to merge program 
pieces and keep everyone’s code in sync. Using CVS was a wise choice for 
us, particularly when we would break things that previously worked and 
we wanted to step back to older versions to see what went wrong. Dan 
was successful in building the interface between the C++ code and the 
Tcl/Tk code so that Megan and Axel did not need to concern themselves 
with the behavior of each others component when writing their code 
for their parts.

The following is a description of the system we built for the CADenary 
design program. 

Program Data Model

CADenary’s data model consists of hooks, strings, and weights.  There 
are two types of hooks, SkyHooks and StringHooks.  A SkyHook can 
be placed anywhere in the work area, whereas a StringHook hangs on 
a string. Strings can hang between any two hooks in the work area. 
Weights can be attached to StringHooks that are first attached to strings.

SkyHooks, StringHooks, Strings, and Weights are all implemented as C++ 
classes. Another C++ class, Model, is a container class for all of these 
objects, and represents the entire work area. This can be seen in the 
Object Model Diagram above in the box labeled “Data Model.”

Some functions were needed in order to build the catenary model and 
use the program well. For instance, we needed to be able to place hooks 
both in the sky and on strings. We needed to be able to select strings and 
hooks by clicking on them so that parameters could be retrieved or strings 
could be attached. We also needed to look at the model in several modes, 
by viewing it in the x-y plane with the correct orientation, by viewing it 
in the x-y plane but turned 180 degrees, or by panning around it in the 
three-dimensional space. 

We implemented a method to find the closest object to the mouse click. 
Whenever the mouse moves, a function is called that finds the closest 

cdObject

cdForce

Vect

LineSegment

a, b

cdHook

cdStringHook cdSkyHook cdStringcdWeight

cdModel

pos cdSpring

cdForceEntry

cdParticle

cdParticleEntry

a,b

cdParticleSystem cdParticleBucket

Data Model Physics SimulationGeometry
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object to the mouse pointer for each type of object. For hooks and 
weights, this is trivial. The distance from the mouse pointer to each hook 
or weight is calculated, and the smallest distance is chosen. Strings are 
slightly more complicated. The distance from the mouse pointer to each 
segment of each string must be calculated. Again, the string which is the 
smallest distance away is chosen as the active object.

In addition to navigation and the usability of the program, we needed to 
construct a model for representing the strings so they behave realistically 
in real time. The strings are placed as segments around the space, and 
each segment is calculated either from hook to hook, as in the Data 
Model representation, or from particle to particle, as in the Physics Model 
representation. These models do not necessarily correspond or behave 
similarly, and we have struggled to decide the best way to relate these 
two very related representations. One possibility is to abandon the Data 
Model representation of strings (connections from hook to hook) and 
use the Physics Model representation for both computation and user 
interaction. Another possibility is to make each StringHook correspond to 
a particle in the Physics Model. This is what we are attempting to do.  

Tcl/Tk User Interface

The Tcl/Tk user interface sits on top of the C++ Data Model.  This part 
of the program represents the menu bar, canvas, and the toolbox. All the 
classes represented by the Data Model have Tcl function wrappers which 
are called by the Tcl program in an event-driven manner based on the 
user’s actions. The Tcl program passes data to the C++ program when the 
user selects a tool or menu option, clicks in the work space, or simply 
moves the mouse around the screen.

The Tcl/Tk user interface provides several options to the user:

 Create a new SkyHook

 Create a new StringHook

 Create a new String

 Select an object

 Retrieve/modify the parameters of an object

 Rotate the scene 180 degrees to view structures

 Real time graphics window

 Interactivity

Most of these options can be accessed through either the menubar across 
the top of the main window, or by click on the corresponding button in 
the floating toolbox. This sets the program into the correct mode and lets 

Debugging
Screenshots from a version 
with a misbehaving physics 
simulation.
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the user perform their duties until a new option is chosen. For instance, if 
the user is interested in setting the parameters of an object by hand rather 
than relying on the inaccuracies of the mouse, they may select the object 
then modify the parameters in the toolbox window.

Each object has certain parameters than can be retrieved by the user and 
potentially modified. Selecting or placing a SkyHook lets the user see the 
x, y, or z coordinate of the hook in space, whereas selecting or placing a 
StringHook lets the user know how far down a string the hook is placed. 
If the user selects or places a String, the Tcl/Tk interface informs the user 
of the length of the string. Initially, the length is one and a half times the 
distance between the two hooks. Each string is divided into thirty particles 
that have individual forces acting upon them, and StringHooks can be 
placed along these particles.

All icons used for the toolbox buttons are originals. They were made for 
this project using Adobe Photoshop. The colors in the background and 
menus are neutral, earthy tones in order to be pleasing to the user’s 
eyes and to reflect the organic properties of the strings used to build 
the catenary models. The renderings of the hooks and strings were 
kept very minimal for several reasons. First, we agreed that a simple, 
elegant interface would make the tool more effective. Second, we wanted 
to ensure that the program ran smoothly in real-time without being 
bogged down with complicated renderings that distract from the form 
in construction.

Physics Simulation

We chose a Spring-Particle system for simulating the physics-based string 
behavior. This choice was based on our need for a robust, interactive 
simulation method that would allow us to interact with the string model 
as it is simulated. The Spring-Particle model in itself does not guarantee 
robustness - its behavior for larger numbers of random combinations of 
springs and particle chains depends in a large part on the solver used 
in the system. We are using the Runge-Kutta solver, an explicit solver. It 
produces reasonably robust solutions for most cases. 

It is susceptible to breaking when the scale of strings change or excessive 
stress is introduced into the springs through stretching the string. Another 
shortcoming of the current Spring-Particle System is the lack of conserva-
tion of length of the string. The system becomes very unstable if the 
stiffness parameter of the spring is set beyond 1. At the highest stable 
setting the string experiences approximately a stretch factor of 1.5 times 
of the at rest length which is far more then a common physical string 
would exhibit. Currently we do not place emphasis on the conservation 
of the length of a string but rather interact with the system based on 
visual feedback. But this problem has to be addressed in further iterations 
of the project.

UI Toolbox
Screenshots of an early version 
of the user interface toolbox. 
Buttons let users place 
SkyHooks, StringHooks, and 
Strings, among other things.
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The Particle Spring model is implemented with the use of the following
classes. The particle functionality is handled in cdParticle.C, 
cdParticleBucket.C, and cdParticleEntry.C. The Spring implementations 
occur in cdForce.C, cdSpring.C, and cdForceEntry.C. The 
cdParticleSystem.C class controls how forces and Particles relate to each 
other. In order to create a string, the classes cdParticle.C and cdSpring.C 
are instantiated to form a chain of Particles, interconnected by springs. 

The parameters of a Spring are the rest length, the length when the spring 
is not in tension, and the damping factor, which is at 0 in our case since 
it has the tendency to spin the model out of control. Particles have a 
mass parameter, a location, and know whether they are confined or 
free to move about. The end hooks of strings and the end particles are 
fixed to the hook positions. A special case is when a string is attached 
to a StringHook. StringHooks follow the movement of the strings they 
are attached to. cdParticleSystem.C deals with the calls that update the 
ParticleSystem. It invokes a Runge-Kutta solver to solve for all the forces 
involved in the update cycle.

The program structure can be seen in the Object Model Diagram in the 
box labeled “Physics Simulation.”

Lessons Learned

One of our original motivations for this project was the statement that 
designers are limited by their tools. If your CAD program can only draw 
right angles, you are going to make a lot of rectangular structures. What 
we thought in the beginning couldn’t have been more true. Not only was 
it easy to quickly figure out what you could do with CADenary to make a 
structure, but it was also easy to figure out what you couldn’t do. Even if a 
certain type of interaction would get you in trouble because of the physics 
simulation, this sort of limitation would present itself plainly and you could 
design right around it.  In about twenty minutes, Dan created a structure 
that looked a lot like the Eiffel tower (but would be self supporting!) using 
CADenary, even in it’s extremely nascent stages.

While C++ might be the best language to use in actual development of a 
computationally intensive, complex program that uses 3D graphics, it may 
not have been the right choice for proof-of-concept work such as what 
we were aiming to accomplish for this class project. Swing and other 
Java APIs can be just as difficult to pick up as Tcl/Tk or the C++ STL, but 
Java may have been a better choice in the end because of the experience 
of the people in the group. Many features in the user interface and the 
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construction of the physics model would have been built much quicker 
and behaved better had they been done in Java. Much of our lost time 
was a direct result of Axel needing to grow more comfortable writing 
code in C++, and Megan needing to learn Tcl/Tk. Axel and Megan both 
learned about developing complex program structures in a collaborative 
setting in C++ and Tcl/Tk, which they did not have prior experience in. 

Using one unified language for all aspects of the program (rather than the 
Tcl/Tk and C++ split we chose) may have made development smoother 
as well as more rapid. One of the original reasons for choosing C++ was 
to have access to the openNurbs library so that we could build skins, 
surfaces, and save the models for use in 3D printers . This was never 
realized simply because we didn’t make it that far.

Another lesson we learned was that it would have been more effective 
if we’d been able to develop the code on a variety of platforms rather 
than only Linux. 

Investigating the pros and cons of physical simulation engines was an 
interesting task because we had not previously looked in depth into this 
field. One lesson learned was the importance of choosing the appropriate 
solver for the task at hand based on speed requirements, robustness and 
required precision of the calculations. An important part of simulations is 
to chose the appropriate criteria in order for the results to be meaningful 
within the chosen setting.

Deliverables

We are able to provide the following deliverables to the class upon the 
completion of this project. 

 A working CADenary program with basic features

 Three Java test applets illustrating physics concepts

 A collection of short movies

 Source code for the project

 Final Project Paper online in PDF form

 Final Presentation
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